Two elementary commutativity theorems for generalized boolean rings
نویسندگان
چکیده
منابع مشابه
Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملGeneralized J-Rings and Commutativity
A J-ring is a ring R with the property that for every x in R there exists an integer n(x)>1 such that x x x n = ) ( , and a well-known theorem of Jacobson states that a Jring is necessarily commutative. With this as motivation, we define a generalized Jring to be a ring R with the property that for all x, y in R0 there exists integers 1 ) ( , 1 ) ( > = > = y m m x n n such that m n xy y x − is ...
متن کاملsome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
let $r$ be a $*$-prime ring with center $z(r)$, $d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated automorphisms $sigma$ and $tau$ of $r$, such that $sigma$, $tau$ and $d$ commute with $'*'$. suppose that $u$ is an ideal of $r$ such that $u^*=u$, and $c_{sigma,tau}={cin r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper, it is shown that...
متن کاملA COMMUTATIVITY CONDITION FOR RINGS
In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.
متن کاملGeneralized Periodic and Generalized Boolean Rings
We prove that a generalized periodic, as well as a generalized Boolean, ring is either commutative or periodic. We also prove that a generalized Boolean ring with central idempotents must be nil or commutative. We further consider conditions which imply the commutativity of a generalized periodic, or a generalized Boolean, ring. 2000 Mathematics Subject Classification. 16D70, 16U80. Throughout,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1997
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171297000549